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An investigation is made of the properties of inertial boundary currents in a 
stably stratified, inviscid, non-diffusive ocean. The Boussinesq and /3-plane 
approximations are adopted. The formalism developed by Robinson (1965) is 
used: the equations are transformed so that density replaces the vertical CO- 

ordinate as an independent variable, and after a suitable non-dimensionalization 
of variables, the various fields are expanded as power series in the downstream 
co-ordinate 7. The motion is shown to conserve potential vorticity. The equations 
and boundary conditions are obtained to order y2. Solutions are obtained in the 
region of formation of the coastal jet (i.e. the case of no mass flux through the 
plane 7 = 0 )  for several cases in which the potential vorticity function depends 
on stream function and density in a simple way. For these cases, it is found that 
in a constant depth ocean, a boundary current can exist only if the geostrophic 
drift a t  the boundary-layer edge is westward a t  all depths. This constraint is 
relaxed if the depth increases rapidly enough in the downstream (northward) 
direction. For slopes just in excess of the critical value, a deep onshore counter- 
current is predicted. Solutions of the first-order problem, using realistic values 
of the various parameters, have been computed and are found to be in qualitative 
agreement with observed features of the Florida Current. 

In  an appendix, it  is shown that the constraint of westward geostrophic drift 
at all levels must hold in a flat-bottomed ocean for arbitrary potential vorticity 
distributions consistent with stable stratification. 

1. The inertial boundary current 
1.1. Introduction 

A model for the study of inertial currents in a continuously stratified ocean has 
been disoussed by Robinson (1965, hereafter referred to as IC). I n  that paper the 
formalism proposed was applied to the problem of the formation of a coastal 
jet (Gulf Stream problem) for certain simple potential vorticity distributions in a 
constant depth ocean. It was shown that a western boundary current of constant 
potential vorticity requires an influx of fluid at  all levels at its seaward edge. 
It is the object here to extend that analysis by (i) considering a wider class of 
potential vorticity distributions, (ii) examining the effects of downstream depth 
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variations, and (iii) carrying the downstream co-ordinate expansion of fields 
(intrinsic to the formalism) to the next highest order. 

Potential vorticity functionals that depend linearly on stream function but 
are independent of density are studied. These distributions correspond to sea- 
ward edge geostrophic drifts that are simply stratified but have a variety of 
downstream behaviours. Punctionals proportional to the square of the density, 
corresponding to a basic thermocline structure, are also examined. The purpose 
is to determine what bottom topographies, and (seaward) velocity and density 
distributions allow an inertial boundary jet to form, and to compare the class of 
allowed interior-jet systems to the real oceans, Accordingly, the resultant jet 
structures are computed for several cases of geometry and geostrophic drift, 
and for one of these, comparison is made with Florida Current sections. 

1.2. Statement of the problem 

The problem to  be considered is that of the formation of an inertial jet along the 
(straight) lateral boundary of a stratified, inviscid, non-diffusive ocean. The 
Boussinesq, hydrostatic and P-plane approximations are employed. In  IC, the 
equations of the model are given, a transformation is made whereby density 
replaces physical height as an independent variable, and a suitable non-dimen- 
sionalization of variables is performed; the reader is referred to IC for a detailed 
discussion and for details of the notation. 

Briefly, the various fields are expanded as power series in the downstream 

(note that this definition differs by a factor lln! from that in IC). For the case 
vo = 0, the equations (2.1)-(2.7) of I C  in non-dimensional form, can be written, 
to indicated order in 7 : 



Here, 

and for vo = 0, it is proper to take $, = 0 whence PN = PN(8) .  
The boundary conditions must be consistently transformed and expanded : 

the reader is referred to  IC for details of the first-order derivation; the second- 
order conditions follow similarly. The notation differs from that of IC in that the 
(non-dimensional) bottom height is here denoted by g = Rlq + $R,r2+ ..., with 
the R, independent of 6 and the second zero subscript, indicating the 6-indepen- 
dency of b, and h, imposed by the vo = 0 constraint, is suppressed. The conditions 
are : 

(a )  At the free surface (0 = h, + h, (6) 7 + Bh, (6) r2 + . . .) 
w, = 0, 

w1 = 0, 0(Y1) 
O(q2)  W Z  + 2h1~10 = 0. 

(1.18) 

(1.19) 

(1.20) 

(6 )  At the bottom (8 = b, + b, (6)  7 + #, (t) q2) 

0(r0) W ,  = Rlv0 E 0, (1.21) 

0(r1) w1 = RlVl, (1.22) 

O ( r 2 )  w,+ 2blw1, = Rlv,+ 2RZv1. (1.23) 

(c )  At the coast u, = 0, all n. (1.24) 

(d  ) At the boundary-layer edge 

v, and w,+O exponentially. (1.25) 

1.3. The wo = 0 coastaljet 

Equations (1.1)-( 1.14) can be utilized to write the variables u, v) w and in terms 
of the II -field : 

(1.26) 

(1.27) 

(1.28) 
(1.29) 

(1.30) 
(1.31) 

(1.32) 

(1.33) 
(1.34) 

(1.35) 
(1.36) 
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These relationships are now substituted in the potential vorticity equations, 
(1.15)-( 1.17), and the related boundary conditions. To zero order in 7, 

(1.37) 

with the appropriate boundary conditions (1.18) and (1.21) identically satisfied. 
Note from (1.37) that the requirement of stable stratification at  g+co, 7 + 0  
imposes the condition Po > 0. 

The first-order equation and associated boundary conditions are: 

P 
n,, + Po n1oo - 6 n, = -P*, 

I I , = O  at $ = O ,  

I I I E + O  as (+a, 
at 8 = bo 

= 0 at 8 = h,. 

(1.38) 

(1.39) 

(1.40) 

(1.41’) 

(1.42’) 

Since b, and h, are independent of c, a [-integration may be performed on 
(1.41’) and (1.42’). This yields the equivalent boundary conditions, 

K,(ITlo+R,)-II, = 0 a t  0 = b,, (1.41) 

KlnlO- Is, = 0 at 8 = h, (1.42) 

(cf. IC equation (3.22 b)) .  Here, K O  and K ,  are constants of integration which, in 
conjunction with Po, Pz, P* and R,, serve to specify completely the first-order 
flow, Physically, K ,  is the ratio of cross-stream velocity to downstream isotherm 
slope at  the surface, and KO is the ratio of cross-stream velocity to the sum of down- 
stream isotherm and bottom slopes at  the bottom. 

To second order, 
PI 
pi n255 + Po F x ? e  - - n2 

PIZ 

PO 
[ rI& - f l 1 ~  (IT,, + p*)] - 3fl1 fl loo]  -t 3 Is:, (1.43) 

(1.44) 

(1.45) 

The boundary conditions expressed by (1.20) and (1.23), after being written in 
terms of the II,, may be integrated once over [ after an appropriate grouping of 
terms and the use of (1.37), (1.41) and (1.42). The resultant conditions are: 

Ko(Is20+R2) - 112 = II$- 2P,I11 Isloo + 2 +Lon: = A(t) a t  8 = b,, 

(1.46) 
( 3 

K , I I ~ ~ - ~ I ~  = I ~ ~ ~ - ~ P , I ~ , I I , , , + L , I ~ ~  = B(~J at 8 = h,. (1.47) 

The quantities Lo and L, are constants of integration. It will be found convenient 
to  define a new variable f?(t, 8) by the relation 

(1.48) 
1 

Is2 = fr + - [(B - 2) 0 + (KO - b,) B - ( K ,  - h,) 21, 
A0 
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where A, e K,  - KO - (h, - b,) = R, - K O  - 1. Then IT satisfies the equations 

h A 

Il, + Po”,, - 5 fr = {right-hand side of (1.43)) 
pt 

1 
- - [(8” - 2) 8 + ( K O  - b,) 8“- (K ,  - h,) Â ”] 

A, 

+ [(I? - 2) 8 + (KO - b,) - (K ,  - h,) A], (1.49) 
p 3 0  

A ~ , ( f i , + ~ , ) - n  = o at o = b,, 

K,n,- II = 0 at 8 = h,. 
A h  

(1  30) 

(1.51) 

In the event A, = 0, it is better to make the substitution 
A n2 = 11’ - +(A- 8) coS me - +(A + B) coS 2 n ~  (1.48’) 

instead of (1.48); the function fr’(t,8) will also satisfy the desired boundary 
conditions (1.50) and (1.51). 

2. Solutions for several classes of potential vorticity 
The solutions to the above equations (1.37)-( 1.51) will now be investigated 

for four different forms of the potential vorticity: 

(i) 
(ii) P = 1 -a2$, 

(iii) P = 1 +a2$, 

P = Po = 1 (constant potential vorticity), 

(iv) P = Po(@ oc 82. 

Inasmuch as the Gulf Stream may be rather well represented by a two-layer 
model with the potential vorticity of the upper layer taken as constant (Stommel 
1965), or as a slowly varying function of stream function (Charney 1955), it can 
be expected that forms (i)-(iii) are capable of describing boundary currents of 
physical interest. Form (iv) is chosen because it can express a more realistic 
zero-order temperature profile than the linear gradient implied by a constant 
Po (taking that constant to be unity involves no loss of generality; it is consistent 
with the scaling of 6 and 5). 

In  the ensuing discussion, the (downstream) direction of increasing 7 shall 
often be referred to as north and the (cross-stream) direction of increasing 6 
as east; however, if the western coastal orientation is not north-south, all results 
that follow will be valid, provided the (properly scaled) downstream variation of 
Coriolis parameter is used for p* in numerical computations. 

2.1. Constant potential vorticity (CP V ) ,  Jirst-order solzction 

For this choice of P,  equation (1.37) yields 5, = 8 where the constant of integra- 
tion is eliminated by taking b, = 0 and h, = l .  Equation (1.38) then becomes 

h [ E +  rJlS0 = -P*7 (2.1) 
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with boundary conditions (1.39)-( 1.42) to be satisfied. The substitution, 
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leads to the equations, ny(e) = -p*, (2.3) 

K,(rIl"'(O) +R,) - rIIq(0) = KlrIiQ'(1) - rI?(l) = 0, (2.4) 

and &(8) +GM@ = 0, (2.5) 

KOK&(O) - $?do) = Kl$A(1) - A(1) = 0- (2.6) 

Note that (2.5) and (2.6) form a Sturm-Liouville (S-L) system. The solutions 
to the above are: 

r ~ ?  = -+p*e2+ce+o, (2.7) 

9, = cos A, 8 + yn sin A, 8, (2.8) 

where 
1 

Q = - A0 [K,R1+/3*(K,-*)], (2-9) 

D = K,(C+R,) ,  (2.10) 

1 
Yn = __ K O  A, ' 

and A, = K ,  - KO - 1, The A, satisfy the equation 

(2.11) 

(2.12) 

Now, inasmuch as A: is the eigenvalueof an S-L system, it must be a real number; 
hence, A, is either a purely real number (consistent with a boundary-layer solu- 
tion) or a purely imaginary number (inconsistent with a boundary-layer solution). 
Thus, it is necessary to seek restrictions on (KO,  K,) so that (2.12) will be satisfied 
only by real A, or, equivalently, that the equation 

(2.13) 

has no real solutions (see figure 1). As shown in IC, this constraint limits the 
allowed domain in (KO,  K,)-space to one of three regions: 

(1) K, -1  > KO 2 0, 

( 2 )  0 2 K ,  > K,+l ,  

(3) K ,  >, 0 2 K,. 

This result is shown in figure 2. (Spiegel(1966) has shown that it holds, not only 
for constant potential vorticity (CPV), but for any P = P,(8) > 0, PN>, = 0.) 
The physical meaning of the restrictions on (KO,  K, )  is that they select the classes 
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of geostrophic drift from the ocean's interior that are consistent with formation 
of an inertial boundary current. Specifically, 

uij'(8) = - llq 
= - - 1 [/3*(Kl - +) + R, KO] 8 - - KO [p*( Kl - 4) + R1 ( K ,  - l)], (2.14) 

A0 A0 

#*- 

/,I - 
-El' , / ' ,  A' 

tanh h 

E ', ' -.'. -- 
- 

h 

(2.15) 

(2.16) 

tanh h 
\ 

\ C' 
\ '\ 

\ 
\ 
\ 
\c 
\ 
\ 
\ 

tanh h 

FIGURE 1. Schematic graphical solution of the equation tanh A = MA/( 1 -NA2)  P(A). 
I n  (a), M > 0 and N > 0. Curve A, A' is drawn for F(0) = M < 1 and there is no non- 
zero solution. Curve B, B' is drawn for M > 1 and gives one non-zero solution. In  ( b ) ,  
M < 0, N > 0 and there is always a non-zero solution. In  ( c ) ,  M > 0, N < 0 and if 
Fm,, 2 1 (as is the case for M = K,-& N = K,K,), there will be one non-zero solution 
for M > 1 (curve E )  and two for M < 1 (curve D) .  In  (d),  M < 0, N < 0 and there are 
no non-zero solutions. 
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For a flat bottom (R, = 0), 
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Kl (KO + 4) (2.17) 1 KO(&-4) -Uuo"(l) 1 = - 
- uuo"(0) = - 
P* AO ) P* A0 

In  region (1) : 

In  region (2): 

In  region (3) : 

K O  2 0, K ,  > 0, KO+* > 0, 

KO < 0, K ,  6 0, KO+* < 0, 

KO 2 0, K ,  < 0, KO+* > 0, 

Kl-+ > 0, A, > 0. 

K,-4 < 0, A. > 0. 

K l - &  < 0, A. < 0. 

FIGURE 2.  The (KO, K,)-plane showing the (unshaded) regions consistent with boundary 
current existence for constant potential vorticity, or more generally for any P = Po(@) 
(after Robinson, 1965a, figure 1).  

Thus, it is clear that in all three permitted rdgimes, both ug(0) and @(l) are 
negative; by virtue of (1.26) and (2.3)) uf'(0) > 0, from which it follows that 
for ajlat bottom, u; < 0; i.e. the geostrophic drift must be westward at  all levels, 
except that it may vanish at  8 = 0 or 1 if KO or K ,  is zero. From (2.4), it appears 
that one could also obtain vanishing ug(0) or u,"(l) by requiring l$(O) or CF(l), 
respectively, to vanish, i.e. by having the lower or upper surface of the geostrophic 
interior be isothermal. However, from (2.7) and (2.4), or equivalently from 
(2.17), it is seen that imposing these conditions forces the choice K ,  = & or 
KO = - &, respectively, and these values are in the forbidden region. 

For R, + 0, these restrictions need not hold. Note that 

- -  - -- KO ( 0 + K , -  1) < 0 for allowed (KO,  Kl) .  au,m 
aR1 A0 

(2.18) 

Hence, for fixed KO, K ,  and 8, one can always find a (negative) value of R, for 
which vanishes; steeper negative slopes will be associated with positive u$ 
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(eastward flow). In  particular, uF(0)  or uF(1) can be made to vanish in two 
different ways. The first is by taking K O  or K ,  to be zero, independent of the value 
of R,. This will result in uo (and thus 0,) vanishing for all 6 at the surface in ques- 
tion. The second is by choosing R, so that the asymptotic bottom or top surface 
is isothermal. Here, the horizontal velocity components will, in general, be non- 
zero at  the bottom or top within the boundary layer. These values of R, are 
denoted by RO, and R:, respectively: 

u$(O,RO,) = RO,-CT(O,RO,) = uF(l,R;) = CY(1,Ri) = 0. 

More negative values of R, will support eastward geostrophic drift at  the bottom 
or top, respectively. 

With the help of (1.66) and (1.67), it can readily be shown that for permitted 

(K"9 KlL 

(2.19) 

This indicates that for given (KO,  K,), if R, is steadily decreased from zero, 
positive u$ will first appear at the lower boundary of the fluid. Also, the gentlest 
negative slope that can support eastward drift is R, just less than - &3* which 
occurs for K ,  + 0; this corresponds to vanishing surface cross-stream flow. Note 
also that the curvature ufr(B) = p* is positive always. 

The expression for the asymptotic transport is 

ug = Qp*-gC-D 

(2.20) 
1 

= - {P*[& - ( K ,  - 4) (KO + 4)] - RiKo ( K ,  - $)}. 
A0 

It is readily shown that for R, = 0,  U$ < 0 ;  the critical value of slope at  which the 
transport changes sign is 

RT = ~*[~-2(K,-Ko)-6KoK,]/[6Ko(Kl-$)] < 0, (2.21) 

and for R, < RF, the boundary current will have a net outflow into the ocean's 
interior. 

To complete the first-order solution, it is necessary to evaluate the A,. These 
are determined by satisfying the boundary condition at [ = 0 (equation (1.39))) 

C.A,#,(B) = - nq(0). ( 2 . 2 2 )  

The function I I Y  may be expanded in terms of the complete orthogonal set of 
functions {#,}, the values of the expansion coefficients thus obtained for this 
example and those to follow are given by Spiegel(l966). The constant potential 
vorticity jet, to first order, is now completely specified: 

Ill (& 0) = CA,  emhn6 [cos h,O + 7, sin h,B] - +b*B2 + CB + D. (2.23) 
37 FIuid Mach. 32 
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The other fields of interest are immediately obtainable from IT,. In particular: 

v1 ( 6 , ~ )  = - Zhn A ,  e-hnE [cos hn8 + yn sin hn6’], (2.24) 

and [,(t,O) = Ch,A,e-”n5[sinhne-yncoshn8]+P*B-C, (2.25) 

the last giving the first-order downstream slope of the isotherm heights. 

2.2. Constant potential vorticity, second-order solution 

Here, the appropriate form of (1.36) is 

IT2[t+ ‘26’6’ = 2p*n1[(7 (2.26) 

where boundary conditions (1.44)-( 1.47) apply. The detailed, explicit solution 
to this problem is found in Spiegel(l966). Briefly, substitution (1.48) is made, and 
the resultant I?-equation is of the form 

fr, + fi,, = ~ c ( m ) ( t )  +m (0) + ~1 ( 6 )  6 + ~2 (61, (2.27) 

with boundary conditions (1.50) and (1.51). Note that the right-hand side of 
(2.26) vanishes as (-+a. Since the &(O) satisfy the same homogeneous part of 
the conditions on fi, it is useful to make the expansion 

(2.28) 

With the help of (1.50) and (1.51), it  is easy to evaluate G and H ,  and after the 
right-hand side of (2.26) is expanded in terms of the +n, an equation for x,($) 
is obtained of the form 

The solution having the proper exponential decay at infinity is of the form 

+ EX Dnd exp { - (Am + t), (2.30) 
mt 

where the D,, D,, and Dnml are known, and the En are determined by insisting 
that u1 vanish a t  6 = 0; since II, vanishes there already, it follows from (1.27) 
that the condition is 

112 = II$ a t  < =  0. (2.31) 

A straightforward but laborious calculation leads to an explicit solution of the 
second-order problem. 

It should be noted that, from (1.38), (1.41), (1.421, (1.46) and (1.47), the 
amplitude of II, is given by @*, R, and R, as well as by KO, K,, Lo and L,. In  
particular, for a flat-bottomed ocean, II, is proportional to p* and 112 to p*2. 
Thus, if the KO>, and Lo,, dependences lead to order unity terms, the first-order 
solution will be a good approximation, provided 7 < I//?*. From the discussion 
of the 7-scaling, it is seen that the physical co-ordinate condition is y < f lp = L,. 
Hence, although a ‘thermal wind’ scale length (Apgh/p, f o  U,) is important in 
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fixing the amplitudes of the solution, the physical length involved in the con- 
vergence of the downstream expansion is L,, the natural length scale associated 
with dfldy. Of course, the existence of bottom topography introduces other 
natural geometrical length scales into the problem, and they serve to limit 
further the range in 7 for which the first-order solution is a good approximation. 

Also, note that while K O  and K ,  are of crucial importance in insuring the 
boundary-layer character of the flow to first order, Lo and L, apparently have 
no corresponding role in determining the nature of the second-order fields, whose 
boundary-layer form is guaranteed by the reality of the A:. This could have been 
anticipated, since the same operator 

and the same constants KO,  K,  appear in the equations and boundary conditions 
for II, and 112, and the right-hand side of the 112 equation is a function of II,. 
Hence, once K O  and K ,  are selected so that I l l  has an exponentially decaying 
c-dependence, the boundary conditions permit an expansion of 112 in the first- 
order eigenfunctions $n(8); the resulting <-equation will then have properly 
decaying homogeneous and particular solutions. This reasoning applies to the 
higher-order equations as well, the form of which is 

9(flI,) = f w,, l-I,, . . * 7 L l ) .  

Therefore, the existence of the boundary current to all orders depends upon the 
proper choice of KO and K,, or equivalently, appropriate values of u; and c?. 
In  particular, for flat bottom, a constraint is found on the sign of uoo but not on 
its downstream variation. 

However, it would be premature to assert that the values of Lo and L, are 
totally unrestricted. The term proportional to < e-h1[ (see equation (2.30)) that 
ultimately appears in the 112-solution indicates a lack of uniform convergence 
of the 7-expansion. It is a simple matter to find a functional dependence 
L, = f, (Lo) such that the term proportional to e-hlc is absent from the right-hand 
side of (2.29); this will remove the offensive term from the II,-solution corre- 
sponding to this particular flow. Also, using a modified Lighthill (1949) technique, 
one can find a second relation L, = f2(L,) corresponding to another Aow field, 
such that the 6 e+ [term does not appear in I12; here, IT, is modified by having its 
<-dependent part multiplied by a factor exp ( - @j4,[), indicating a downstream 
narrowing of the boundary current. So it would seem that a more complete 
investigation of the convergence problem might well result in limiting the 
values of Lo and L,, and hence limiting the classes of u?, consistent with main- 
taining a boundary current. Inasmuch as this task remains to be done even for 
the simplest CPV case, the detailed second-order solutions for the other potential 
vorticity forms will not be given here (these are easy enough to derive if need be). 
It seems reasonable, however, that the first-order solutions obtained, which 
boundary layer properly and join smoothly with the interior fields, will a t  most 
be in need of a small quantitative downstream modification. This is certainly 
true in the two instances mentioned above. 

37-2 
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Hence, the investigation of the second-order problem indicates that, for 
oceanic flows whose downstream variation is slow enough so that this expansion 
technique can provide an adequate description, the question of the existence ofa 
boundary current is resolved by examining the first-order solution. No further 
fundamental constraints on the driving interior fields are obtained by going to 
second (or higher) order. To put it another way, within the region of validity of 
the expansion, existence is found to depend upon the local values of urn and 
a<"o/ay, and not on any higher-order derivatives. 

Finally, note the physically pleasing result that the bottom slope parameter 
R, always appears multiplied by KO in the first-order solution, although not in the 
second-order solution. Thus, to lowest order, the slope R, will not be 'felt ' by an 
incoming baroclinic u-field (u,(O) = KO = 0); it will, however, influence the 
higher-order solutions. 

2.3. First-order solution for P = 1 - a2$ 
This choice of the potential vorticity function maintains the linear zero-order 
stratification inherent in the CPV model, but is capable of describing a wider 
variety of asymptotic zero-order u-fields and downstream density gradients. 
The first-order II-equation becomes 

II1[5+ IT,&?+a2n, = -p*, (2.32) 

with boundary conditions (1.39)-(1.42); the choice b, = 0 and so = 1 may be 
consistently retained. The substitution, 

(2.33) 

is made in (2.39), and there results the equations: 

rII,""+a2rI," = -p*, (2.34) 

#;+A:#, = 0, A: = k i + a 2 ,  (2.35) 

Ko(rI,m~(0)+~l)-nI,"(o) = K,ITI,"~(l)-rl,"(l) 

= Ko#i(0)-$n(O) = K ~ # ~ ( l ) - # B ( l )  = 0. (2.36) 

The solution is readily found to be: 

P* II," = -- +CcosaO+DsinaO, 
a2 

(2.37) 

#n =cosh,O+ y,sinh,B, (2.38) 

(K,asina+cosa-1)+R,Ko(cosa+K,asina) , (2.39) 

(2.40) 

(2.41) 

1 
P* C = +Ko(R,+aD),  
a 

A- = ( K ,  - KO)  a cos a - (1 + K,K,a2) sin a, 

(2.42) 
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and the A, satisfy the relation 

(2.43) 

Now, for a boundary current, the kn must all be real; and so the requirement on 
the A, becomes A: > a2 for all n, a more stringent condition than in the previous 
case. Thus, for a2 > 0, it is clear that the permitted region of (KO,  K,)-space will 
be reduced from its CPV extent. This is shown in figure 3 which is drawn for 
the case a2 = 1. Use is made of (2.43) solved for K,: 

KO + ( l / A )  tan h 
1 - K O  A tan h * 

K, = __._____ 

FIGURE 3. The (KO, K,)-plane showing the (unshaded) regions consistent with boundary 
current existence for Po = 1, PI = - m 2 .  The hyperbolic curve satisfies the equation 
K ,  = (KO + tan 1)/( 1 - K O  tan 1). The dashed line K ,  = KO + 1 is included for comparison 
with figure 2. 

By varying A, one obtains a family of hyperbolas in K O  and K,; the choice 
h2 = a2 results in the hyperbola that, with the axes, serves as the limiting boun- 
daries of the allowed domain. For a2 2 n2, the entire (KO,  K,)-plane is forbidden; 
i.e. no boundary-layer solutions can exist. 

An investigation of the correspondingly allowed asymptotic fields once again 
shows that with a flat bottom, only geostrophic drift that is westward at  all 
levels (except that it may vanish at  0 = 0 or 1) is consistent with achieving a 
coastal boundary current. In  detail, 

sin a KO - K, cos a 1 -cosa K,sina +(,+ a - -) a sin ao] 

+ R, KO [(sin a - K,a cos a)  cos a0 - (cos a + K,a sin a)  sin a01 . (2.44) I 
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A careful determination of the properties of this expression as KO and K, are 
varied indicates also that au?/aR, < 0 and u $ ~ ] ~ , = ~  > 0 always in the region 
of interest. The bottom velocity will vanish for a slope 

Klas ina+cosa- l  . 
K,acosa-sina 1 ' RO- _ _  (2.45) 

for R, < R;, u,"(O) will be positive. At the top, the slope for vanishing u; is 

(2.46) 

R! and R: are both negative for allowed KO and K,; the smallest negative value 
for Ri occurs for K, = 0. 

The expression for the transport is easily derived from (2.44): 

I R K  
+ ~ [ l - c o s a - K l a s i n a ]  ; (2.47) 

a 
this is negative for R, = 0. 

2.4. Pirst-order solution for P = 1 + a2$ 
Here, the first-order II-equation is 

and using the usual separation technique, one can write the solution in the form: 

II, ( 5 , O )  = A ,  e-knt (cos A, 0 + 7, sin A, 8 )  + P* - + C cosh a0 + D sinh a0, 
n a2 

(2.49) 

where A2, = lc2, - a2, (2.50) 

tanh, = (K1- KO) A, 
1 + KoK,A2,' 

(2.51) 

The requirement of real k, no longer imposes the restriction of real A,. Thus, 
eigenvalues A 2  that satisfy 

(2.52) 

will be perfectly consistent with a boundary current, provided they also satisfy 
the inequality A;' < a2. It is easy to see graphically that (2.53) can have, a t  
most, two non-zero solutions. Also, for the case K, = KO + 1, 
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is a relevant eigenfunction, belonging to the eigenvalue A, = 0 (the corre- 
sponding k, = a). Hence, the solution may be rewritten in the form: 

N h  

ll, (6,6') = NoAo e-at #o(8) + c A2 e-kmt q52(0) 
m= 1 

P* 
n = N h + l  U2 

m 

+ c Ane-k.s~,(6')+-+Ccosha8+Dsinha6', (2.55) 

/ I / 

FIGURE 4. The (KO,  KJ-plane showing the (unshaded) regions consistent with boundary 
current existence for Po = 1, PI = a2. In the permitted region between the hyperbolic 
curve K ,  = (KO + tanh 1)/( 1 + K O  tanh 1) and the dashed line KO = K ,  + 1, hyperbolic 
8-eigenfunctions are required. 

where No is either 0 or 1, Nh is 0, 1 or 2, and 

#, = cos An 8 + yn sin A, 8, 

$2 = cosh A 2  6' + yz  sinh A: 8, 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

P* 
Q = - ~ + K o ( a D + R l ) ,  (2.60) 

A+ = (K,-K,)acosha+(a2K,K,- 1)sinha. (2.61) 

The acceptability of hyperbolic eigenfunctions is paralleled by an increase in 
the permitted region of KO, K, space. Figure 4 is drawn for the case a2 = 1. The 
area now permitted, which was forbidden for CPV, corresponds to solutions with 
Nh $: 0. For a2-+0o, the entire (KO, K,)-plane 'opens up': any values of these 
parameters will be descriptive of coastal boundary currents. However, careful 
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inspection of the resultant asymptotic fields shows that, in all cases, the familiar 
restrictions obtain in the range 0 < 8 < 1:  

cosh a 
sinha-(Kl-Ko)-- a 

cosha- 1 K ,  
a2 a 

+R,K,[(sinha-K,acosha) cosha6' 

+ (aK,  sinh a - cosh a)  sinh a01 

(2.62) < 0; for R,= 0; 

K,asinha-cosha+ 
K,a cosh a - sinh a 

and has its smallest negative value for K, = 0, 

R:= -x0 '* [Koa sinh a + cosh a - 11, 

sinh CL 
(Kl -KO + 1) 

(2.63) 

(2.64) 

cosh a 
-~ (K, - KO)  - KoK,  sinh a]  + so (cosh a - 1 - Kla sinh a )  

a Cd 

< 0 for R, = 0. (2.65) 

The quantities RO,, R: and U g  have their usual definitions. 
Thus while a potential vorticity function with a linear $-dependence 

( P  = 1 ~f: a") is descriptive of a much wider class of asymptotic fields consistent 
with boundary current formation than the constant potential vorticity case 
(to which the results properly reduce in the limit a-tO), the westward drift 
condition at  all levels for a flat bottom is not relaxed. Eastward drift is possible 
only with a bottom that deepens sufficiently rapidly in the downstream direction, 
the value of such a slope being a function of the other parameters of the system. 

To see this more clearly, note that the asymptotic form of (1.38) can be written: 

(2.66) 

or equivalently , u,"es = <g = ' p u g + / ? * ] .  (2.67) 

Recall Po > 0 for stable stratification. In  the appendix, it  is shown that for 
€2, = 0, IIq > 0, 0 < 8 < 1, always; hence, for PI < 0, IIGe < 0 for flat bottom 
and it will remain negative until the slope is adjusted to yield negative IIT 
(i.e. ug > 0). This means that positive u; will first appear at  the upper or lower 
surface; in the examples studied, it has always appeared first at  the bottom. 
Recall that the slope at  which ug(0) changes sign is that for which the asymptotic 

P 
PoIIg,-<IIy = -/?*, 

Po 

Po l3 



Inertial boundary currents in a strati$ed ocean 585 

bottom surface becomes an isotherm, i.e. for which RO, = <$(O, RO,). After a 
&integration of (2.67), this condition can be written 

(2.68) 

where the right-hand side is a function of R, and the relation Pi1 = a<o/iM has 
been used. On the assumption that u$ first changes sign at  the bottom for all 
potential vorticities, then u$ < 0 in the range of integration of (2.68) and one 
can thus see a tendency for potential vorticities with PI(@) > 0 (or 'mostly' 
positive, in the appropriate sense) to require a less negative bottom slope to 
achieve positive u$ than for PI = 0, the reverse being true for PI < 0. In parti- 
cular, for the case of an isothermal upper surface ((?( 1) = 0) ,  it is evident that for 

P = 1 + a 2 ~ ,  RY > - /3* (less steep), 

RQ-- * P = 1, 1 -  P 7  

P = 1 - a2$, RY < - /3* (steeper). 

In addition, an analysis of (2.53) and (2.76) shows that for P = 1 +a2$, the 
gentlest negative slope that can produce vanishing u$(O) goes from -0.5/3* 
for a:+ 0 to zero for a: + GO (but I IT  --f 0 also in this limit, implying vanishingly 
small flow); whereas for P = 1 - a2$, the value varies from - 0.5p* for a-tO 
to --co for a+r. Also, it is seen from (2.67) that uze is greater for PI < 0 than 
for PI > 0 at  R, = RO,; hence, there is a tendency for large (positive) curvature of 
u$ to be associated with steep (negative) RO,. 

Unfortunately, it  is hard to delve further into the mathematical formalism 
to gain a clearer insight into the physical processes that lead to the constraints 
we have discovered. Although the results for specific examples are everywhere 
consistent with the existence criteria for transport formulated by Greenspan 
(1962, 1963) and Pedlosky (1965), a simple expression of constraint based on the 
density space formulation has not yet been derived. 

2.5. First-order solution with thermocline structure: P = 02/a 

In the examples considered above, the zero-order stratification has always been 
linear (Q = 8) ,  owing to the constancy of Po. The real ocean exhibits a thermo- 
cline behaviour, with steeper thermal gradients occurring near the top than at  
the bottom. To model this more realistically, it  is necessary to allow Po to have a 
temperature dependence. For example, the choice Po = 0jd leads to a temperature 
field 8 = e--({--l)'d which decays by a factor l i e  from its surface value in a distance 
d > 0 below the surface; a proper choice of d will produce a realistic looking 
temperature profile. The resultant It,-equation may be solved without difficulty, 
yielding the result 
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However, the choice Po = a-W2 is also capable of describing realistic tempera- 
ture profiles, and since the mathematics involved in obtaining the eigenvalues 
and expansion coefficients is somewhat simpler, this is the form to be investi- 
gated. Thus, using (1.63), it follows that 

c, = c - ale. (2.70) 

0.0 - 
FIGURE 5 .  Asymptotic zero-order density profiles corresponding to P = @/p(p+l) for 
indicated values of p ,  compared with suitably scaled oceanic density profiles calculated 
from data given by Iselin (1936), Fuglister (1960), and the Commonwealth Scientific and 
Industrial Research Organization, Australia (C.S.I.R.O. Aust., 1963). Oceanic density 
profiles: -. .-. .- , a t  seaward edge of Florida current off Cape Kennedy (Canaveral), 
28"N., 79"W.; --, a t  seaward edge of Florida current off Jacksonville, 30"N., 79"W.; 
- - - - _ -  , at seaward edge of the East Australia current off Brisbane, 27OS., 155"E.; 
- - _ _  , in the south-eastern North Atlantic (24ON., 72"W.) well beyond the seaward edge 
of the Florida current. 

In this case, it is convenient to let b, = p > 0, so = q = p + 1.  Then, with the 
choice a = pq, c = q, 8 will go from p to q as co varies from 0 to 1 : 

c o  = 4 P  -Pal@, or e = P q k -  Q). (2.71) 

Figure 5 shows temperature or, more properly, density profiles €or various values 
of p ;  these are compared with profiles calculated from temperature and salinity 
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measurements taken at several points seaward off the Florida and East Australia 
Currents. It is seen that judicious choices of p will provide qualitatively good 
approximations to the oceanic curves. 

For this case, the II,-equation is 

(2 .72 )  

with boundary conditions (1.39)-(1.42) in effect. It is now useful to put 

rI1K 0) = 2 A ,  exp {- k,(pq)-% 4,(@ + WV), (2.73) 

whence r1y1 = -pqpe-2, (2.74) 

(2.75) 

n 

% 
82 $:+-$, = 0, 

and 

KOW?'(P) +R,) - W P )  = K ,  nY(4.1 - W 4 )  

= Ko42P) - $,(PI = K142q) - 4 m  = 0. (2 .76 )  

The asymptotic solution is 

IIIq = pqp*[lnO+C8+D], (2.77) 

where 

and 

(2.78) 

D = K -l-lnq+(K,-q)C = K - o - l n p + ( K o - p ) C + ~ .  RlKO (2.79) 
4 P 

The #,(8) have different forms, depending on whether the associated ki is 
greater than, equal to, or smaller than $. For k i  > $, we have 

4, = O+[cos (An In 8)  + y, sin (A ,  In e)],  (2.80) 

where A,, which is defined by hi = k:- $, satisfies the eigenvalue equation, 

(2.81) 

(q  - &Kl) cos (A, In q) + K ,  A, sin (A,  In q) 
= (&K, - q )  sin (A, In q) + K, A, cos (A,  In q) * 

and (2.82) 

The eigenfunction, go  = 8Q + ~ ~ I n 8 ] ,  (2.83) 

which corresponds to the case ki = 4 is only a relevant solution if the relation, 

K ,  = (2.84) 

P 
is satisfied. In that case, 

Yo = (2P-K0)/[(2fInP)K,-213InPl. (2.85) 
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For 0 < 7c; < &, define hz2 = i - k k .  Note that the requirement of real km 
means that only values of Az2 < t are consistent with a boundary current. If 
the associated eigenfunctions are denoted by $2, then: 

$2 = 04 [cosh (A2 In 8) + ~2 sinh (A; In O ) ] ,  (2.86) 

Graphical analysis reveals that the eigenvalue equation (2.84) has no more than 
two non-zero solutions. 

FIGURE 6. The (KO, KJ-plane showing the (unshaded) regions consistent with boundary- 
layer existence for P = 19~/p(p+ 1). The dashed hyperbola gives the relation between 
KO and K,  for h = 0, and is drawn for p = 0.1. In the permitted region between this 
curve and the K,-axis, only eigenfunctions of the type given by (2.93) are required. 

The condition on Az2 defines an allowed region in ( K O ,  K,)-space; this is shown 
in figure 6. As noted previously, the forbidden regions coincide with those found 
for the CPV case. In  finding the diagonal boundary in the figure, the line 
K ,  = KO + 1, use has been made of the identity 

tanh (4lnz) = (x- l ) / (x  + 1). 

The portion of allowed (KO, K,)-space that requires only eigenfunctions of the 
type #n(0), n + 0, has been drawn for the case p = 0.1. 

Once more, it is found that for R, = 0, all permitted Ko,K,  values lead t.0 
negative values of u,"(8), p < 8 < q. A study of the explicit form of ug, namely, 
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reveals that the other familiar results obtain as well, thermocline or no: 

(2.91) 

where RO, and R: are defined in the usual way. 
In  evaluating 

u; = I0 u?d<,, 

one must take care to note that coo = l/pO = pq8-2, and not unity as in the 
previous examples. Therefore, 

1 (h, [i (1nq+ 1) -- ( ~ n p +  1) 
1 

P 

(2.92) 

and for R, = 0, U$ < 0. 
It should be pointed out that in the foregoing analysis, the tacit assumption 

has been made that the three defined quantities Ao, A, and A- were non-zero, 
or equivalently, (KO, K,) values were not chosen on the diagonal or hyperbolic 
boundaries of the allowed regions. If they are chosen on such a curve, then and 
only then must the 8-eigenfunction corresponding to the 5-eigenvalue k, = 0 
(A ,  = 0 for CPV) be included in the complete set of eigenfunctions. This new 
eigenfunction will be a linear combination of the two terms multiplied by C and 
D in the expression for the corresponding IT?, and since it does not decay with 
5, will modify the field at  00. If it  is possible to choose (KO, K,) on the curve so 
that the amplitude of II, remains finite, then the solution will not differ quali- 
tatively from other solutions with (KO,  K,) inside the permitted zones and the 
same constraints will be obeyed. It can be shown that it is impossible to so choose 
(K,,K,) for flat bottom in the examples studied above; for these cases, the 
appropriate 'A' is required to be non-zero. 

In  fact, it is readily shown that the case of constant Coriolis parameter (/3* = 0) 
with uniform depth imposes a A = 0 relationship, and since the solution of the 
resulting homogeneous I I T  equation is of precisely the same form as the 6- 
independent member of the set of IT, eigenfunctions, the system has the trivial 
solution II, = 0. However, a non-trival solution can exist for /3* = 0, R, $: 0 
where it is possible to have A =t= 0. Thus, a boundary current can exist in a uni- 
formly rotating system, but only if the depth varies in the downstream direction. 
It must be emphasized that this conclusion holds only for the wo = 0 boundary 
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current. Free inertial currents (with oo + 0 )  in a uniformly rotating ocean have 
been discussed by Robinson & Niiler (1967), but the boundary current remains 
to be studied. 

2.6. The onshore countercurrent 
It has been seen that it is possible to have eastward geostrophic drift at any and 
all levels, provided the bottom deepens rapidly enough in the downstream direc- 
tion. That is, II,(co,8) can be negative under the right conditions and still be 
consistent with a boundary current. But it is also required that III(O,8) = 0 
for all 6. Hence, it follows that at  any level 8, at  which uc(8) is positive, then 
o1 ( f ; ,  8,) = rIlt < 0 for some range(s) of 6. This means that an efflux of fluid of a 
given density at  the seaward edge of the jet is invariably accompanied by a 
countercurrent of the same density fluid within the jet. This, of course, is physi- 
cally necessary for the vo = 0 jet: the fluid being discharged into the geostrophic 
interior must come from 'downstream '. If the entire asymptotic velocity profile 
is eastward, then the entire jet will be flowing southward. 

If, instead, the bottom slope is just negative enough so that positive ug 
appears near the bottom only and the transport u? remains negative, it is possible 
to see, in a general way, the region of f ;  in which the countercurrent will form. 
The function I IT will be positive over most of its range, going through zero and 
changing sign near the bottom. For large 6, the total II,-field may be approxi- 

(2.93) 
mated by 

Since 4, is the lowest eigenfunction of a S-L system, it will be of one sign in the 
relevant range of 8, and might as well be taken positive. The coefficient A ,  is 

rI1 N A ,  $,(8) + IIF(8). 

(2.94) 

and it is reasonable to state that for II," mainly positive, A,  will tend to be nega- 
tive. If it is assumed A ,  < 0, then from (2.93) it follows that as ( is made smaller, 
II, will become less positive for all 8 until 5 is small enough for the higher eigen- 
functions to  contribute appreciably to the solution. Thus, in this range of f ; ,  
negative values of u,, are less negative and positive values more positive than at  
f ;  = 00. Also, o1 = IIIE is positive at  all levels. Hence the required deep counter- 
current will not appear until small values of f ;  are reached. It is also seen that 
there will surely be a countercurrent for some range of 8 just above and including 
the value for which uz vanishes, as long as the amount of fluid transported 
downstream for large f ;  exceeds the geostrophic influx. The foregoing analysis, 
although not rigorous, should alert one to be on the lookout for deep inshore 
countercurrents in regions where the bottom deepens rapidly enough to admit 
of deep eastward geostrophic drift at  the offshore edge of the stream. 

3. Examples of possible boundary currents 
It is now appropriate to  examine the solutions derived above in greater detail 

in order to learn to what (if any) extent they are capable of reproducing quali- 
tative features of observed coastal boundary currents. 
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3.1. Range of validity of the Jirst-order solutions 

First, it  should be clear that the distance downstream for which the first-order 
solution can be considered a good approximation is strictly limited. For one 
thing, the driving mass flux from the geostrophic interior may have a significant 
downstream variation. Similarly, the depth may not be well represented as a 
linear function of 7. Either or both of these effects, which are parameterized by 
the values of Lo, L, and R,, will enhance the amplitude of the II, field, thus modi- 
fying the solution with increasing 7. In  addition, the basic driving mechanisms 
themselves, even without the above-mentioned higher-order corrections, will 
call up second- and higher-order solutions as we proceed downstream, since the 
amplitude of 112 is also a function of KO, K ,  and R,. For example, note that 
inasmuch as uo is calculated geostrophically for the v0 = 0 jet, its vanishing at  
[ = 0 forces the vanishing of el (and w,) there as well. Now, in the model under 
discussion, the line of intersection of the 5 = 0 plane with the bottom must be 
an isotherm. Thus, for R, + 0 ,  the first-order solution clearly becomes a poor 
approximation with increasing 7. Even for R, = 0, the first-order solution will be 
dominant only for 7 < lip*. Hence, when inquiring into the downstream develop- 
ment of the temperature and velocity fields for various input parameters, one 
must bear in mind that the range of validity of the first-order solutions, several 
of which will be displayed graphically below, cannot be determined until further 
assumptions about the driving mechanisms are made and the resultant second- 
order problem is solved, although crude upper bounds can be obtained. 

3.2. Limitations of the models studied thus fa r ;  the need for numerical solutions 

It is also true that potential vorticity forms studied above, which conveniently 
lead to analytic solutions to the first-order problem, are not sufficiently general 
to guarantee a good approximation to oceanic fields. To see this, note that while 
the basic density stratification is determined by Po, the asymptotic form of 
(1.38)) 

or, equivalently, 

clearly shows that the downstream variation of the stratification cr is a function 
of PI as well as Po. Hence, while it is possible to model a realistic thermocline 
structure well at a given latitude by taking P = Po = 02/p (p + 1) and judiciously 
choosingp, it is generally impossible to get more than one isotherm slope correctly 
with a given choice of K O  and K,. This is so because with the particular choice 
PI- = 0, both c$ and ci'$ are determined solely by Po and therefore cannot be chosen 
independently. On the other hand, even as simple a form as P = 1 + C(? (C = & a2) 

permits a rather good representation of isotherm slopes over the entire depth 
interval for the right value of C. However, the resultant linear basic stratification 
is not realistic. Thus, it is necessary to have both Po = Po(@ and a non-zero PI 
(preferably also a function of 8) to model properly the asymptotic density and 
velocity fields. 
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Despite this shortcoming, the forms of P we have considered are capable of 
describing a wide range of qualitatively different asymptotic fields. In  the simplest 
such case, i.e. constant potential vorticity in a flat-bottomed ocean, there must 
be a spreading of the isotherms downstream and a positive value for u& or 
ugCC. The same restrictions on & and uge will hold for any P = Po (8)  > 0, but the 
corresponding I& (0) relationship may permit ugS (19) to take on negative values. 
Examples of this are displayed in figures 7 and 16 below. The downstream spread 
of isotherms is required for any PI < 0 as (3 .2)  clearly shows (recall ug < 0 
for flat bottom). However, choosing PI > 0 suggests the possibility of relaxing 
this constraint. In  fact, the choice KO < 0 < K ,  (in the region that becomes 
permitted for P = 1 +a2@), coupled with the IIT > 0 constraint, insures a 
downstream convergence of isotherms and a region of negative ugC. Hence, 
various combinations of density and velocity fields can be approximated using 
the four simple forms for P ,  and it should therefore be possible to obtain first- 
order solutions that exhibit qualitative features of oceanic coastal jets. 

To obtain better than a qualitative agreement, Po and .PI must be chosen as 
realistically as possible. This will almost surely involve 0-dependences that not 
only do not lead to analytic solutions but that likely are not expressible in terms 
of simple functions. However, numerical solutions should be obtainable without 
undue difficulty. In  fact, the use of numerical techniques in conjunction with 
high-speed computers is clearly required to obtain realistic coastal jet solutions. 
This is because: (a)  neither the Florida Current nor the Kurishio Current satisfy 
well the w, = 0 hypothesis, they already exist as free jets before they begin 
flowing along a western boundary (possibly the best example of a wo = 0 coastal 
jet is the East Australia Current, but there is a scarcity of temperature-salinity 
data near the region of formation, 15'-25' S. lat.), and (b )  the bottom topography 
is generally not independent of the cross-stream co-ordinate, a fact that leads to 
a modification of the jet structure, especially adjacent to the coast (see Niiler & 
Spiegell968). Both of these features preclude the possibility of a 0- 5 separation 
of variable and confound attempts to find analytic solutions. Hence, a logical 
next step is a numerical solution of the vo + 0 equations with realistic driving 
fluxes and boundary conditions. For the present, however, an inspection of 
several examples of the types of geostrophic drift consistent with forming a 
v, = 0 coastal jet and a detailed examination of the resultant jet structure for 
some of these, must suffice. 

3.3. Discussion of several solutions 

The solutions to be exhibited were obtained with the aid of the Harvard Com- 
puting Centre's IBM 7094 Data Processing System. Eigenvalues were computed 
to at  least four significant figures, and the machine was programmed to calculate 
the expansion coefficients and sum the requisite series to produce the fields of 
interest. Enough terms were taken so that the boundary conditions were satisfied 
to  tenths of a per cent, and the last term included did not affect the first two 
figures of the answers (these criteria were relaxed somewhat in the neighbourhood 

Figures 7 and 8 show (in non-dimensional units) the asymptotic fields only of 
of [ = 0,e  = b, for R, $: 0). 
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several possible first-order solutions, illustrating to some extent the wide variety 
of jets capable of description by our model. Figures 9-17 show the full velocity 
and density fields associated with nine different first-order solutions. They were 
selected because they exhibit qualitatively some of the observed features of the 

wm gkJ* 
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0 0.5 0.1 B"q -0.2 -0.1 0 G I P "  
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FIGURE 7. Asymptotic velocity and density profles for the cases: 

(a)  P = 1, K O  = 1, K ,  = 10, R, = -2p*,  CJ? = 0.760/3*; 
(b)  P = 82/0.11, KO = 0.1, K ,  = - 1, R1 = 0, U r  
(c) P = 82/0.11, KO z= 0.02, K ,  = 10, R, = - 3/3*, CJF = -0*0298/3*. 

-0.134; 

Florida Current as it flows over the Blake Plateau: gradual spreading and 
deepening of the isotherms downstream, and greatest horizontal velocities near 
the surface. 

(a) ~ l ~ ~ - b o ~ ~ o ~  curTents with &near basic strati$cation 

The first three examples, shown in figures 9-1 1, are solutions for purely baro- 
clinic jets, i.e. jets with uF(0) = vr (0 )  = KO = 0 for the cases P = 1, 1 + $  and 
1 - $, respectively. The K,  values have been chosen to make u,"(l) = 1. The 

38 Fluid Mech. 32 
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curvature in ug, and thus the spread of isotherms, is greatest for P = 1 - $ and 
least for P = 1 + @, whereas the downstream rise in surface temperature is 
greatest for the latter and least (almost non-existent) for the former. The w1 
and w1 contours are all quite similar, the degree of curvature of profile varying 

0 0.2 0.4 ,K"q 

1.0 * 
0.8 
0.6 
0-4 

0.2 
-1 0 

0 0.1 0.2 I"? 

0.25 J 0.9 0.5 P"? 
0. 

-L t 1 

0.8 

(4 
FIU~RE 8. Asymptotic velocity and density profiles for the cases: 

(a) P = 1 +@, K O  == 0.4, K1 = 1.6, R, = - 2p*, UF = -0'0243p* ; 
(6) P = 1 -@, KO = 0.6, K ,  = 10, R, = -p*, UF = 3.733p*; 
(c) P = G'2/2, KO = 0.1, K1 = - 1, R, = -p*, 77; = - 0'139p*. 

with that of ug. The v, field is always positive for < > 0, having its maximum at 
the surface adjacent to the coast; while wl, which is also always positive (except 
that it vanishes at  < = 6 = 0 and 5 = l), takes on its maximum value at  approxi- 
mately 6 = 6 = 0-6. Of course, this upwelling everywhere results solely from the 
types of asymptotic fields considered and is not at all a necessary feature of 
coastal jets. This immediately follows from the fact that for all jets with Po = 1 
and R, = 0 ,  an interchange of the values K O  and - h', results in a reflexion of the 
fields about the plane 8 = 0.5, thus giving jets with w, < 0 for the examples just 
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FIGURE 9. Velocity and density fields for a baroclinic jet with P = 1, 

KO = 0, K ,  = 2, lJ2 = - 0.583b*. -, vJ,B*; - - - , WI/D*8. 
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FIGURE 10. Velocity and density fields for a baroclinic jet with P = 1 + @, 

KO = 0, K1 = 1.176, CJ; = - 0.537/3*. -, vl/p*; - - - 9 WllP*"  
38-2 
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FIGURE 11. Velocity and density fields for a baroclinic jet with P = 1 - @, 

KO = 0, K ,  = 10, UF = - 0*643P*. -, v,/P*; - - - 9 W,IP*" 
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FIGURE 12. Velocity and density fields for P = 1,  KO = 0.4, K ,  = 1.6, 
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considered. Also, note that the small amplitude of w, (relative to that of uo and 
v,) in these and succeeding examples results from the consideration of only cases 
with gently sloping asymptotic isotherms, especially at  levels where u: is large. 

;i 0 

0.2' 

5 
1 1 0 

1 x lo-' ' t 1 0.8 0.5 I 0.2 0.1 

FIGURE 13. Velocity and density fields for P = 1 + +, KO = 0.4, K ,  = 1.6, 

R, = 0, 'U? = - 0.773J3*. -, vl/J3*; - - - 7 Wl/P*2. 

The next two solutions (figures 12 and 13) are for constant depth jets with 
uF(0) non-zero and increasing monotonically with height (or density) for con- 
stant potential vorticity and for P = 1 + $. Except for the fact that vl(0) + 0, 
the v, and w, fields do not differ qualitatively from those considered above. How- 
ever, for the example of figure 18, the asymptotic isotherms, which always 
deepen downstream, converge for 8 > 0.8 and diverge for 6' < 0.8, thus indicating 
a rather modest thermocline development downstream. 

(b )  Current with uF(0) > 0 

The next to be considered is a CPV model with the parameters so chosen that 
the u? profile has a positive region near the ocean bottom. In order to see whether 
the selected bottom slope, R, = - 2p*, is consistent with topography of the real 
ocean basin, the values of the scaling parameters must be specified. Typical 
values in the vicinity of the Blake Plateau are: Uo = 10 em sec-l, H = 5 x lo4 em, 
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A p / p  = 4 x 10-3, g = see-l, /3 = 2 x 10-13 em-l see-l, 
and @ z 0. These lead (see IC) to a downstream scale length of 300 km, a cross- 
stream scale length of 60 km, scales for v and w of 450 em see-l and 0.08 cm see-l, 
respectively, and a value for /3* of 0-8. The cross-stream length is a reasonable 
Gulf Stream value, while the fact that the upwelling scale is some 3 to 4 orders 
of magnitude greater than that of the oceanic Ekman divergence lends credence 
to the neglect of surface wind stress in the model. Even the large downstream 
velocity scale leads to no unreasonable high velocities (as long as v1 5 l), since 
the distance from the Florida Straits to Cape Hatteras corresponds to a range in 
7 of only 4. The physical value of the bottom slope Az/Ay is readily calculated 

em sec2,f0 = 6 x 

from the relation, 
Ax H RIP --= -R - - ?-H;  
AY = P f o  

(3.3) 

for the given values, a slope of R, = - 2/3* yields a physical slope of - 3 x lop4. 
Since slopes of the order of tenths of a per cent are common parallel to the coast 
on the Blake Plateau, the value associated with the jet being discussed is by no 
means unrealistic. 

;i 0 
E 10 5 0 

0.005 

I I I 

0 1 2 3 5  

FIGURE 14. Velocity and density fields for P = 1, K O  = 0.4, K ,  = 1.6, R, = -2p*,  
U r  = - 0.383p*. The v, countercurrent region is shaded. 
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The v1 field is seen (figure 14) to have the necessary deep countercurrent; 
indeed, it is tucked against the coast as we anticipated. Not surprisingly negative 
v1 values persist for values of 8 greater than those for which u; is positive. This 
suggests the possibility of choosing parameters such that a countercurrent exists, 
even if ug < 0 a t  all levels. (In fact, such a case is exhibited in figure 15 below.) 
In  all the previous solutions, for a given 8, v1 took on its maximum (positive) 
value at  6 = 0; in the present example, this clearly is not so. Also, for the first 
time, w1 takes on both signs; by virtue of the kinematic lower boundary condi- 
tion, this must occur whenever a current-countercurrent system impinges on a 
sloping bottom. 

Once numerical values for the scaling parameters are introduced, they can be 
inserted in the non-dimensional solutions to obtain physical density and flow 
fields. A variation of the values of Ap/po and H will relate the solutions to other 
inlet conditions. It should be noted that for a given physical slope (i.e. Rl/p* = 

const.), changing the value of U, only does not alter the physical fields at  all; 
the scalings of u, v, w and g,  coupled with the values of /3* and L, are such that the 
parameter U, cancels out of the problem, with the natural scale for the cross- 
stream velocity component being given by (Aplp,,) gHp*/f;. This result, which is 
traceable to the absence of u in the conservation of potential vorticity equation, 
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2 1 0 
\ 
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2 1 0 

' t 0.5 0.3 0.1 0.5 

u.5 
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0 1 2 

0.1 

5 
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0 

FIGURE 15. Velocity and density fields for an asymptotic profile symmetric about 5 = 0.5, 
with P = 1, KO = 1, K ,  = - 1, R, = 0 and U g  = - 0.583p*. The symmetry permits a 
splitting of the solution into upper and lower non-communicating halves = - a). 
-- , vl/p*; - - -, 102 x w1/p*2. 
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means that for given Ap/po, H and R1/P*, the physical value of the driving mass 
flux can be varied only by the choice of new values of KO and Kl;  thus a new 
first-order solution would be needed to find the resultant jet structure. 

( c )  Current with symmetric ug ; second-order solution 

The next example (figure 15) has a symmetric ug and is thus, in a sense, the 
closest approximation to a barotropic driving mass flux permitted a t  CPV in a 
stratified flow. Since R, = 0, the fields are completely symmetric about the 
constant temperature surface y = 0.5; thus, the upper-half solution and its 
mirror-image lower half are themselves valid solutions to the problem where one 
of the horizontal bounding surfaces is isothermal = - co). In  order to get 
some quantitative idea as to the distance downstream at which the first-order 
solution is no longer dominant, the second-order solution for this example has 
been calculated for the case of vanishing first-order geostrophic transport u? 
(corresponding to a minimal perturbation of the system). The parameters are 
K 0 -  - 1, K 1 -  - - 1, Lo = L, = -?, R, = R, = 0. The solution is found to be: 

I1, = /3*(0-5[1+ 0 - 02] - [O-4979 e-1'3075 #A@) 
+ 0.0019 e-6'5845 #3 ( 6 )  + 0.0007 e-12'7235 fi5 (0) + ...I}, 

+ [(0.2007 - 0.0782g) e-1'307: - 0.3423 e-2.6145] #, (0) 

112 = /3*2{0*5833 - 1.3125 e-1'3075+ 0-3021 e-2.6145 

+ [0.0859 e-6.5845 - 0.00462 e-1.3075 + 0.00485 e-2.6145 1 4 3  (0) 

+ [O.O215 e-12.7236 - 0.000354 e-1.3075 + 0.000337 e-2'6145 145 ( 6 )  + . *.I, 
where 

q5m = cosh,B+h;1sinh,6, A, = 1.307, A, = 6.584, A, = 12.723. 

The v1 and vz fields are calculated according to (1.29) and (1.30) and are found to 
yield physical velocities that are equal in magnitude for 7 N O.S/p*. This is so, 
even though the ratio of the amplitudes of the driving mass fluxes IuYql/lugl is, 
at most, equal to &/3*r. Hence, it is seen that second-order corrections will indeed 
become important even in a region where modifications of the driving terms are 
very small. A second example has been solved for the case Lo = L, = 0 for which 
uy > 0 everywhere; here, both ]021/1011 and lu~l/]u~l indicate convergence for 
7 < QIP*. 

( d )  Current with thermocline structure 

The next first-order solution is the case P = e2/1-1, i.e. p = 0.1. This leads to 
the thermoclinic zero-order stratification 6 = 0-11/ (1 .1-~) .  In  figure 16, the 
lines of constant density are labelled with the values 0 - p  so that the density 
range at = 0 will run from 0 to 1. Note that u; has considerable negative 
curvature in physical space, while v115=o increases almost linearly with 5. In  
density space, u& is positive (as it must be) and the o115=o profile is similar in 
shape, although opposite in sign, to that of u;. The asymptotic density field, with 
its gently deepening thermocline structure, is qualitatively reminiscent of 
meridional temperature sections in the interior North Atlantic in the latitude 
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range of the Blake PIateau (Puglister 1960, pp. 49 and 51) and consistent with 
observations in the Florida Current (Iselin 1936, pp. 60-9). Unfortunately, a 
choice of parameters p ,  KO,  K ,  and R, that well represents the observed density 
and bottom topography gives a u; scale leading to transports that are an order 
of magnitude too small, whereas a choice of K O  and K ,  that yields a realistic 
transport is descriptive of excessively downward sloping density surfaces a t  the 
jet's seaward edge. The arbitrary choice PI = 0 is simply not descriptive of the 
Florida Current. 

0.4 0.1 lir 1 

0 1 0-P 

5 
1 1 0 

Basic stratification 

q.5 
"0.1 x 1 0 - ~  

0 1 2 3 5  -0.2 -0.1 0 u r / p  

R, = 0, UF = -0.091p". -, V1//3*; - - - , wl/P*2. 

FIGURE 16. Velocity and density fields for P = 02/0.11, KO = 0.02, K ,  = 10, 

3.4. Model tor  the Florida current; concluding remarks 
Accordingly, a compromise is made by accepting a linear basic stratification and 
seeking the best 'fit' from the remaining forms of the potential vorticity func- 
tional. The choice P = 1 - $, KO = 0.1, K ,  = 3.0, R, = - 2p" leads to a solution 
that is about as realistic as can be obtained with the available forms €or P. The 
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various fields are displayed in non-dimensional units in figure 17, which is labelled 
for the specific choice p* = 0.8. The parameters were selected to try to match 
the solution's transport and cross-stream density sections at q = 0.25 and 
0-375 with those of the Florida Current off Cape Kennedy (formerly Cape 
Canaveral) and Jacksonville, respectively. The latter sections were calculated 
from temperature and salinity sections given by Iselin (1936) in his figures 41 
and 43. With Iselin's figure 48 serving as a rough guide, the model has been 

5 1  
1 

0 

5 10 5 n 
L 

0.9 0.7 0.5 0.3 
l A  

---_ 

> O  

0 0  1 2 3 5  1P" 
FIGURE 17. Velocity and density fields for P = 1 - @, KO = 0.1, K ,  = 3.0, R, = - 2p*, 

P* = 0.8, UF = - 0.899. The v1 countercurrent region is shaded. -, v,; - - - f w,. 

adjusted to give a transport of 27 x lo6 m3 sec-l at Cape Kennedy and 40 x 106 
m3 see-1 at Jacksonville. A comparison of the theoretical and observed density 
sections is given in figures 18 and 19. Apart from the inherent lack of thermo- 
cline structure, the model is seen to  survive the comparison fairly well. The 
(negative) slopes of the isopycnals as they leave the coast steepen with depth in 
both model and ocean, and even the slight levelling off of the slopes of the deeper 
oceanic isopycnals at the coast is mirrored to an extent in the solution. It is this 
levelling off that is associated with the deep onshore countercurrent shown in 
figure 17. Whether this countercurrent would still appear in the solution if more 
realistic values of cross-stream topography and stratification were incorporated 
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in the model is not clear. The authors are unaware of any measurements either 
affirming or denying the existence of such a countercurrent at the points in ques- 
tion. 

FIGURE 18. Sigma-T values for a cross-section of the Florida Current off Cape Kennedy 
(formerly Cape Canaveral) plotted at  left, compared with values given by the model of 
figure 20 at 7 = 0.25. 
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FIGURE 19. Sigma-T values for a cross-section of the Florida Current off Jacksonville 
plotted at left, compared with values given by the model of figure 20 at 7 = 0.375. 

However, there is little purpose in making a detailed survey of the points of 
agreement and discrepancy between our model and the Florida Current. The 
model is admittedly crude; in order to circumvent the restrictive v,, = 0 approxi- 
mation, the origin of the downstream expansion has been taken half-way between 
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the southern tip of Florida and Cuba. Also, it is clear that the second-order terms 
in the expansion must be of importance at  7 = 0.3 since, there, the depth has 
increased by a factor of 815 from its initial value. What should really be done is to 
place the origin of the expansion a t  the wo + 0 Cape Kennedy section and, with 
more realistic values of P(6, $) and Rl( t ) ,  see how closely the inertial model 
forecasts the physical situation at  Jacksonville. Such a numerical investigation 
is now in progress. 

Appendix. By S. L. SPIEQEL 
For the various simple potential vorticity distributions studied in this paper 

and in IC, it has always been found that in a constant depth ocean, the formation 
of an inertial boundary current required a seaward geostrophic drift that was 
westward at  all levels. That this restriction might hold generally for inertial 
coastal jets was strongly suggested by a calculation presented in the closing 
section of IC. It is the purpose here to prove that this constraint holds for ar- 
bitrary potential vorticity for the wo = 0 jet. 

The relevant differential equation is 

with boundary conditions (1.39)-(S.42). Here, PI is an arbitrary function of 8, 
but the requirement of stable stratification implies Po(6) > 0, 0 < 6 < 1. Let 

This leads to the equations 

The equations for the #n are of Sturm-Liouville form, with eigenvalues A,, 
provided Po (6) > 0. 

Now in order for there to be a boundary current, it  is necessary for all the 
A, to be real; thus the A, must all be positive. One way to get an upper bound for 
the lowest eigenvalue A, is to  select a normalized trial function P(6) that satisfies 
the boundary conditions on the $, and calculate the Rayleigh integral, 

it is known from S-L theory that A, < I,. 
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Let G(8) be the normalized form of rIr: 

Since G satisfies the 4% boundary conditions, it  can be used as a trial function to 
get an upper bound for the lowest eigenvalue A,: 

where use has been made of (A 3). Thus, no boundary current will form if the 
right-hand side of (A 10) is negative. The quantities p and N 2  are both positive. 
Since I IT = - u$ and P;l = Z&, the last condition can be restated in the form 

for the existence of a coastal boundary current. In  other words, in the absence 
of bottom topography, the inertial jet must receive an influx of fluid at  its sea- 
ward edge. 

The question now arises whether or not there can be an efflux of fluid into the 
ocean's interior at  any level and still maintain a boundary current. Equivalently, 
one may inquire if it  is possible to have A, > 0 if IIq(8) is negative anywhere in 
the interval 0 < 8 < 1. The answer is that it is not possible; for any rIr that takes 
on negative values, a trial function F can be constructed such that 

l: FLf (F)d t  < 0, 

which implies A, < 0. An example of such a rIq and its associated trial function 
F is shown in figure 20. F is chosen to coincide with II? in the range it is negative 
and to be zero everywhere else except in a small region near each end-point, if 
necessary, to satisfy the boundary condition there. The amplitude of these end- 
point corrections (which may conveniently be formed from a portion of a sine 
curve) may be made arbitrarily small without altering the ratio PIP'; hence, their 
contribution to the integral 1: FLF(F) dt 

can be made vanishingly small. Furthermore, there will be no contribution from 
the neighbourhoods of the points on the @-axis where F suddenly changes slope, 
since the value of the integral in such a neighbourhood is found (via an integra- 
tion by parts) to equal the difference in slopes times the value of P at the point 
in question. Now F is equal to zero at  the points of discontinuous slope, and 
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IIF'(0) must be finite for any physically interesting flow. Thus, the value of the 
integral is indeed zero at  these points. Hence the integral IR may be evaluated: 

= / 0 1 ~ 2 y ~ ) a 0  = rrF-LP(nF)de = p* (nq/e)ae, s s (A 12) 

where the last two integrals range only over regions of 0 where IIF < 0, and where 
use has been made of (A 3). It is clear that the Rayleigh integral is negative, 
which means there can be no boundary current. It is therefore concluded that 

FIGURE 20. Example of a II? that changes sign (solid curve). A trial function P(8) (dotted 
curve) is chosen to coincide with IIy for its negative range (8, < 8 < 1) and be zero else- 
where except for a small range near the endpoint (0 < 0 < 8,) where it may attain in- 
finitesimal amplitude to satisfy the boundary condition. The Rayleigh integral jPP"P;1 d8 
will be negative for this F .  

the presence of positive u; at any level is inconsistent with achieving boundary- 
layer flow along the coast over a flat bottom. The only way to avoid this restric- 
tion is to permit infinite velocity gradients, which on physical grounds would 
imply the local importance of dissipative effects and thus be inconsistent with the 
purely inertial model, or to relax the requirement of stable stratification, since 
the positiveness of Po is crucial to the above argument. It may be noted that this 
derivation constitutes a proof that the Green's function for any S-L system 
having only positive eigenvalues is always positive. 

The support of this work by the National Science Foundation, in part by 
Grant G-24903 (Atmospheric Sciences) and in part by Grant GP-3533 (Oceanic 
Dynamics) to Harvard University is gratefully acknowledged. 



Inertial boundury currents in a strati$ed ocean 607 

REFERENCES 

CHARNEY, J. G. 1955 The Gulf-Stream as an inertial boundary layer. Proc. Nut. h a d .  

C.S.I.R.O. Aust. 1963 Oceanogr. Cruise Re@. no. 6. 
FUGLISTER, F. C. 1960 Woods Hole Oceanogr. Inst. Atlas Series 1. 
GREENSPAN, H. P. 1962 A criterion for the existence of inertial boundary layers in 

GREENSPAN, H. P. 1963 A note concerning topography and inertial currents. J .  Mar. Res. 

ISELIN, C. O’D. 1936 A study of the circulation of the western North Atlantic. Pap. Phys. 
Oceanogr. Meteor. 4, no. 4. 

LIGHTHILL, M. J. 1949 A technique for rendering approximate solutions to  physical 
problems uniformly valid. Phil. Mag. (Ser. 7), 40, 1179-201. 

NIILER, P. P. & SPIEGEL, S. L. 1968 Formation of an inertial current on a continental 
shelf. J Mar. Res. 26, 13-23. 

PEDLOSKY, J. 1966 A necessary condition for the existence of an inertial boundary layer 
in a baroclinic ocean, J .  Mar. Res. 23, 69-71. 

ROBINSON, A. R.  1965 A three-dimensional model of inertial currents in a variable den- 
sity ocean. J .  Fluid Mech. 21, 211-23. 

ROBINSON, A. R. & NIILER, P. P. 1967 The theory of free inertial currents: I. Path and 
Structure. Tellus, 19, 269-91. 

SPIEGEL, S. L. 1966 Existence and structure of inertial boundary currents in a stratified 
ocean. Harvard University Ph.D. thesis (unpublished). 

STOMMEL, H. 1965 The czllf Stream, 2nd ed. Berkeley and Los Angeles: University of 
California Press ; Cambridge University Press. 

Sci. (U.S.) 41, 731-40. 

oceanic circulation. Proc. Nut. Acad. Sci. (U.S.) 48, 2034-9. 

21, 147-54. 




